Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Public Health ; 24(1): 483, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38365666

RESUMO

BACKGROUND: Few studies have clarified the mechanisms linking social anxiety and loneliness in older populations. The study aimed to explore how social network mediate the relationship between social anxiety and loneliness in older adults, with perceived social support playing a moderating role. METHODS: A total of 454 older patients completed the Social Avoidance and Distress Scale, Lubben Social Network Scale-6, Chinese version of the Short Loneliness Scale and Perceived Social Support Scale. Bootstrap and simple slope methods were used to test the moderated mediation model. RESULTS: Social anxiety had a significant positive predictive effect on loneliness and social network partially mediated this relationship. The relationship between social anxiety and social network, as well as the relationship between social network and loneliness, was moderated by perceived social support. Specifically, perceived social support buffered the effects of social anxiety on social network, but the buffering effect diminished with increasing levels of social anxiety. On the social network and loneliness pathway, the social network of older persons with higher perceived social support has a stronger prediction of loneliness. CONCLUSIONS: The study found that social anxiety can contribute to loneliness by narrowing older adults' social network. High perceived social support can buffer this process, but do not overstate its protective effects. Thus, interventions to reduce social anxiety and improve social network and social support may help prevent and alleviate loneliness in older adults.


Assuntos
Solidão , Apoio Social , Humanos , Idoso , Idoso de 80 Anos ou mais , Comportamento Social , Povo Asiático , Ansiedade
2.
J Biomater Appl ; 32(8): 999-1010, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29359624

RESUMO

The matching of scaffold degradation rate with neotissue growth is required for tissue engineering applications. Timely provision of proper spaces especially for cartilage tissue engineering plays a pivotal role in chondrocyte cluster formation. In this study, poly(urethane urea) was synthesized using conventional two-stage method by extending the isocyanate group terminated prepolymers with different amounts of GPLGLWARK peptide, which responses the degrading induced by matrix metalloproteinase 13, the main proteinase for cartilage matrix degradation. The Fourier transform infrared spectrometer with the attenuated total reflection and 1H nuclear magnetic resonance spectra revealed that the peptides were introduced to poly(urethane urea) according to the characteristic absorption bands of the peptide and the newly formed urea bonds. The ultraviolet-visible spectroscopy spectra showed that the weight percentages of the peptide in the three poly(urethane urea) were 25%, 32%, and 35%. Atomic force microscopy images revealed that phase separation occurred in all poly(urethane urea) samples and became increasingly apparent with increasing amount of peptides introduced. Mechanical tests showed that the poly(urethane urea) strength increased with increasing amount of peptides in poly(urethane urea). Poly(urethane urea) proteolysis in matrix metalloproteinase 13 solution was more rapid than hydrolysis in aqueous buffer, and proteolysis rate was dependent on the amount of peptides in poly(urethane urea). Cell proliferation on the material surface in vitro displayed nontoxicity for all synthesized poly(urethane urea). In vivo subcutaneous implantation evaluation revealed the presence of local foreign body reactions triggered by poly(urethane urea) but was not due to peptide in poly(urethane urea). Moreover, the synthesized poly(urethane urea) with significant phase separation did not degrade under the matrix metalloproteinase 13 free subcutaneous environment, but poly(urethane urea) with minimal phase separation was degraded by attacking of the enzymes adsorbed on the hydrophobic surface through non-specific adsorption.


Assuntos
Materiais Biocompatíveis/metabolismo , Cartilagem/citologia , Metaloproteinase 13 da Matriz/metabolismo , Peptídeos/metabolismo , Poliuretanos/química , Engenharia Tecidual/métodos , Ureia/análogos & derivados , Sequência de Aminoácidos , Animais , Materiais Biocompatíveis/química , Cartilagem/metabolismo , Linhagem Celular , Proliferação de Células , Condrócitos/citologia , Condrócitos/metabolismo , Hidrólise , Teste de Materiais , Camundongos Endogâmicos C57BL , Peptídeos/química , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...